# Unraveling Multicomponent Images by Extended Cross Correlation Analysis<sup>†</sup>

Bailin Zhang,<sup>‡</sup> Shannon Yan, and Kopin Liu\*

Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P.O. Box 23-166 Taipei, Taiwan 10617 Received: April 13, 2007; In Final Form: May 24, 2007

In the course of studying the reaction dynamics of  $F + CH_2D_2 \rightarrow HF + CHD_2$ , several small features in the (2+1) REMPI spectra of the CHD<sub>2</sub> product were observed. Using the technique of imaging spectroscopy, those new features were identified and assigned to the  $2_1^1$ ,  $3_1^1$ , and  $5_1^1$  bands. The ion velocity-mapped images acquired for those features, however, displayed severe overlaps with each other, rendering data analysis difficult. The extended cross correlation method was then applied for the first time in analyzing the ion images and successfully extracted the genuine pattern of each entangled component, which in turn enables us to focus on the dynamics information embedded in the multicomponent images.

### I. Introduction

It has been amply demonstrated in a series of reports that the time-sliced ion velocity-imaging technique is a powerful method to reveal the product pair correlation in bimolecular scatterings.<sup>1–12</sup> The identification of the correspondence between the state-pair and the observed image feature rests on the conservations of energy and momentum, provided that all energetics are known.<sup>12</sup> Otherwise, one can go in the opposite direction by using the image feature to identify the unknown product state or to assign a previously unidentified REMPI (resonance-enhanced multiphoton ionization) spectral peak, as demonstrated recently for the  $1_1^1$ ,  $3_1^1$ , and  $4_1^1$  bands of the CD<sub>3</sub> radical.13 We dubbed this approach imaging spectroscopy or spectroscopy by imaging. In the first part of this paper we apply imaging spectroscopy to the CHD<sub>2</sub> radical, identifying two previously unobserved REMPI transitions,  $2_1^1$  and  $5_1^1$ , in addition to the  $0_0^0$ ,  $1_1^1$ , and  $3_1^1$  bands, from the reaction  $F + CH_2D_2$  $\rightarrow$  CHD<sub>2</sub> + HF.

When the probe laser frequency was held fixed at these bands, however, the acquired images display contaminations from the spectrally adjacent bands, resulting in severe overlaps of several components on image features. Observing an overlapped image has been noted in the past. If the energetics is such that the contributions from different components or sources can be resolved from the target one in the product recoil speed distribution P(U), then a simple subtraction scheme suffices to pull out the desired speed distribution-provided that the speed distribution of the contaminant is known from an independent, single-component image. This is the case found previously for the CHD<sub>2</sub>( $3_1^1$ ) image from F + CHD<sub>3</sub>  $\rightarrow$  CHD<sub>2</sub> + DF.<sup>14</sup> More recently we encountered another type of overlapping images. To explore mode-specific reaction dynamics in  $Cl + CHD_3$ using pair-correlation measurements, a tunable IR (infrared) laser was used to excite the CHD<sub>3</sub> reagent to  $v_1 = 1$ , i.e., one-quantum excitation of the C–H bond. The IR-on image of the  $CD_3(v=0)$ product clearly exhibits features from both the stretch-excited and the unpumped ground-state reactants. Since the two product channels of  $\text{Cl} + \text{CHD}_3(v_1=1) \rightarrow \text{HCl}(v'=1) + \text{CD}_3(v=0)$  and  $\text{Cl} + \text{CHD}_3(v=0) \rightarrow \text{HCl}(v'=0) + \text{CD}_3(v=0)$  are nearly degenerate, a complete overlap of their respective features on the image was observed. A threshold method was then developed to determine the fraction of vibrationally excited  $\text{CHD}_3$  in the molecular beam, with which the mode-specific dynamics from the stretched-excited reaction can then be uncovered.<sup>15</sup>

As will be shown here, the overlapped images in the present paper are of a different nature. We resorted to a more elaborate method, extended cross correlation (XCC),<sup>16,17</sup> to unravel the overlapped interferences and to recover dynamics information from the multicomponent images. The XCC method is one of many data analysis techniques to identify and extract multiple patterns from experimental data. It is a pattern recognition-based rather than a model-based method. Like several other similar techniques, such as covariance mapping<sup>18</sup> and principal component analysis,<sup>19,20</sup> it assumes that a set of spectra can be regarded as linear combinations of patterns. The coefficients of the patterns represent their contributions to a given spectrum. As long as those patterns are not completely overlapped, the ratios of their coefficients can be drawn out from the recursion map in the XCC technique, with which the desired pattern for each individual component can then be recovered. The interested readers are referred to refs 16 and 17 for the basic concept of XCC and the merits compared to other similar data analysis methods.

## **II. Experimental Section**

The crossed-beam apparatus and experimental details have been presented previously.<sup>21,22</sup> Only a brief description of relevant points will be given here. A discharged, pulsed beam of a mixture of 5% F<sub>2</sub> in Ne was used to generate the F-atom,<sup>22,23</sup> and the supersonic expansion of neat CH<sub>2</sub>D<sub>2</sub> yielded the target beam. Two pulsed beams cross in a differentially pumped scattering chamber. The reaction product CHD<sub>2</sub> was interrogated by a (2+1) REMPI scheme via its  $3p^2 B_1 \leftarrow \tilde{X}^2 B_1$  transition.<sup>14,24</sup> The UV probe laser, near 333 nm, was about 8–10 mJ pulse<sup>-1</sup> and was softly focused through a f = 50 cm cylindrical lens. A time-sliced velocity imaging technique then mapped the recoils of the state-tagged CHD<sub>2</sub><sup>+</sup> ion.<sup>21</sup>

<sup>&</sup>lt;sup>†</sup> Part of the "Sheng Hsien Lin Festschrift".

<sup>\*</sup> Corresponding author e-mail: kpliu@gate.sinica.edu.tw.

<sup>&</sup>lt;sup>‡</sup> Present address: Department of Chemistry, Wayne State University, Detroit, MI 48202.



**Figure 1.** Examples of two REMPI spectra of the CHD<sub>2</sub> radical products near the origin band from (a) the reaction  $F + CH_2D_2 \rightarrow CHD_2$  + HF at  $E_c = 0.42$  kcal/mol and (b) the reaction  $F + CHD_3 \rightarrow CHD_2$  + DF at  $E_c = 2.76$  kcal/mol.

TABLE 1: Vibrational Frequencies and the Spectral Shifts, All in cm<sup>-1</sup>, in the (2+1) REMPI Detection of the CHD<sub>2</sub> Radical  $^{f}$ 

| state              | $v_1(a_1)$        | $v_2(a_1)$        | $v_3(a_1)$       | $v_4(b_1)$       | $v_5(b_2)$ | $v_6(b_2)$   |
|--------------------|-------------------|-------------------|------------------|------------------|------------|--------------|
| $X^{2}B_{1}$       | 3116 <sup>a</sup> | $2221^{a}$        | $1034^{a}$       | 510 <sup>b</sup> | $2413^{e}$ | $(1248)^{c}$ |
| shift from $0_0^0$ | -79               | -60               | -53              | 655              | -48        |              |
| $3p^2B_1$          | $3037^{e}$        | 2161 <sup>e</sup> | 981 <sup>d</sup> | 1165             | $2365^{b}$ | $1210^{b}$   |

<sup>*a*</sup> Reference 25. <sup>*b*</sup> Reference 24. <sup>*c*</sup> Reference 26. <sup>*d*</sup> Reference 14. <sup>*e*</sup> This work, deduced from the spectral shift from the  $0_0^0$  band. The frequencies of the  $v_1$  and  $v_2$  modes in the  $3p^2B_1$  state agree with ref 24 within a few cm<sup>-1</sup>. <sup>*f*</sup> The origin band  $0_0^0$  is at 59 921 cm<sup>-1</sup>.

#### **III. Results and Discussion**

(A) Identification of the REMPI Bands. Figure 1 exemplifies the REMPI spectra, around the origin band  $0_0^0$ , of the CHD<sub>2</sub> radical from two different reactions,  $F + CH_2D_2 \rightarrow CHD_2$ + HF at  $E_c = 0.42$  kcal/mol and  $F + CHD_3 \rightarrow CHD_2 + DF$  at  $E_c = 2.76$  kcal/mol, respectively. In the case of  $F + CHD_3$ , in addition to the prominent  $0_0^0$  band, a small feature was seen, which was ascribed previously to the CHD<sub>2</sub>  $3_1^1$  band.<sup>14</sup> The REMPI spectrum for the reaction  $F + CH_2D_2$ , however, indicates richer product state distributions. Besides  $0_0^0$  and  $3_1^1$ bands, a strong peak labeled as  $1_1^1$  (vide infra) and two weaker (adjacent to the  $3_1^1$  peak) features labeled as  $2_1^1$  and  $5_1^1$  (vide infra) were seen.

The assignments of those bands are based on the following. As summarized in Table 1, from the resonance Raman spectrum of CHD<sub>2</sub>, Westre et al. obtained  $v_1$  (the CH stretching fundamental) = 3116.2 cm<sup>-1</sup>,  $v_2$  (the CD<sub>2</sub> symmetric stretch) = 2221.5 cm<sup>-1</sup>, and  $v_3$  (the CD<sub>2</sub> scissors) = 1034.2 cm<sup>-1</sup> for the electronic ground state  $\tilde{X}^2 B_1$ .<sup>25</sup> Using (2+1) REMPI spectroscopy Brum et al. reported  $v_4$  (the out-of-plane bend) = 510 cm<sup>-1</sup> for  $\tilde{X}^2 B_1$  as well as the fundamental frequencies of five modes (except  $v_3$ ) in the excited  $3p^2B_1$  state.<sup>24</sup> Given the above and from the observed spectral shifts of those new features from the  $0_0^0$  band, the  $1_1^1$  and  $2_1^1$  transitions were then assigned. To our best knowledge, no previous experiment reported the  $v_5$ (the CD<sub>2</sub> antisymmetric stretch) and the  $v_6$  (the CH bend) modes of the  $\tilde{X}^2 B_1$  state; theoretically, a high level ab initio calculation predicted 2358 and 1248 cm<sup>-1</sup> for  $v_5$  and  $v_6$ , respectively.<sup>26</sup> To identify the nature of the remaining feature that is blue-shifted



**Figure 2.** Four raw images of the CHD<sub>2</sub> products from the  $F + CH_2D_2$  reaction at  $E_c = 2.32$  kcal/mol. The probe laser frequencies were fixed at the peaks of the four respective bands, labeled in Figure 1(a).

from  $3_1^1$  or red-shifted 48 cm<sup>-1</sup> from the  $0_0^0$  peak, we resorted to the imaging spectroscopy method.

In that approach the image of the reaction products  $\text{CHD}_2$  was acquired with the probe laser wavelength fixed at the (unassigned) spectral peak. The exothermicity of the reaction  $F + \text{CH}_2\text{D}_2 \rightarrow \text{HF} + \text{CHD}_2$  is known,  $\Delta H_0^0 = -31.63$  kcal/mol.<sup>1,25,26</sup> By conservation of energy, the possible state-pair of the two reaction products was then sought to match the resolved ringlike structures on the image. Figure 2 presents four raw images of CHD<sub>2</sub> from the  $F + \text{CH}_2\text{D}_2$  reaction at  $E_c = 2.32$  kcal/mol with the probe laser frequencies parked at the peaks of the four respective bands. The  $1_1^1$  image is characterized by an intense double-ring structure, which is significantly different from the other three images. While the general patterns of the latter three are similar, subtle differences in the widths and the splitting of the outer rings are noticeable.

The similarity and the difference of these images are better appreciated in the P(U) distributions, for which the density-toflux corrections have been made.<sup>21,27</sup> The results are presented in Figure 3, in which the anticipated energetic limits of the product state-pairs were calculated and shown as the vertical dotted lines. From the relative intensities of the features in P(U)distributions, the above assignments of the  $1_1^1$ ,  $2_1^1$ , and  $3_1^1$  bands are confirmed. Since the vibrational frequencies of the  $v_5$  and  $v_6$  modes in the upper  $3p^2B_1$  state are known (Table 1), the corresponding frequencies in the  $\tilde{X}^2 B_1$  state can be obtained from the spectral shift of  $-48 \text{ cm}^{-1}$  (from the  $0_0^0$  peak) for the unknown, up to this point, feature (labeled as  $5_1^1$  in Figure 1). Thanks to the large difference in the vibrational frequencies of  $v_{5}$  and  $v_{6}$  modes, the distinct structure at  $\mu_{\mathrm{CHD}_{2}} \sim 1.1$  km/s in the right lower panel of Figure 3 then provides the evidence in support of the present assignment of the  $5_1^1$  band. This completes the REMPI assignments shown in Figure 1.

(B) Removing the Contributions of v = 0 and  $v_1 = 1$  from Images. As can be clearly seen from Figure 3, none of those four images can be ascribed as straightforward state-pairs from the labeled REMPI-bands, due to the spectral congestion. Worse yet, their product recoil speed distributions P(U) are complicated by heavily overlapped structures from several different components. To unravel the reaction dynamics from those multi-



**Figure 3.** The derived CHD<sub>2</sub> product speed distributions P(U), in the center-of-mass frame, from the four images shown in Figure 2. The vertical dotted lines give the energetic-allowed speeds of the indicated product state pairs ( $v_{CHD_2}$ ,  $v_{HF}$ ). The dotted curve in the four panels illustrates the contribution from the spectral tail of the  $0_0^0$ -band, which is taken from Figure 4.

component images, a two-step procedure was adapted. First, we will subtract the features associated with the  $CHD_2(v=0 \text{ and } v_1=1)$  states from those images in this subsection. Then in the next subsection we will introduce a more elaborate algorithm to extract the correlated information for the  $v_2$ ,  $v_3$ , and  $v_5 = 1$  products.

Figure 4(a) shows the raw image when the  $\lambda_{\text{probe}}$  was fixed at the peak of  $0_0^0$  band, and Figure 4(b) depicts the corresponding P(U) distribution at  $E_c = 2.32$  kcal/mol. Clearly, this product image is dominated by the state-pairs of (0<sub>0</sub>, 3) and (0<sub>0</sub>, 2) without any trace of contaminations from the adjacent spectral features. [Herein, we denote the state-pair as ( $v_{\text{CHD}_2}$ ,  $v_{\text{HF}}$ ).] Its P(U) distribution is also displayed as the dotted curve in all four panels of Figure 3 by matching the slowest (0, 3) structures, respectively. A closer inspection of the four resultant P(U) distributions, with the (v=0)-contribution removed, indicates that the one for  $1_1^1$  is distinctly different from the other three. We ascribed it to a distribution mainly from the ( $1_1$ , 2) and ( $1_1$ , 1) pairs, i.e., the "pure"  $1_1$ -P(U) distribution, though possible small contributions from the ( $2_1$ , 2), ( $3_1$ , 2), and ( $5_1$ , 2) product pairs cannot be ruled out.

Exemplified in Figure 5(a) is the resultant P(U) distribution for  $3_1^1$  without the CHD<sub>2</sub>( $\nu$ =0) contribution. Also shown as the dotted curve (labeled 1<sub>1</sub>) is the contribution from the "pure" 1<sub>1</sub>-distribution as just described. Note the minor 1<sub>1</sub>-contribution to the  $3_1^1$  distribution. Hence, even if the 1<sub>1</sub>-distribution is not as pure as we have claimed, it has little consequence on the results to be presented. Subtracting it from the  $3_1^1$  distribution then yields a new  $3_1^1$  without the contaminations from both the 0<sub>0</sub> and 1<sub>1</sub> components, as shown in Figure 5(c). Similar analyses were then performed for the  $2_1^1$  and  $5_1^1$  distributions in Figure 3, and the results are shown in Figure 5 (parts (b) and (d), respectively).

(C) Extended Cross-Correlation Analysis of the  $2_1^1$ ,  $3_1^1$ , and  $5_1^1$  Distributions. Using the successive, simple subtraction scheme, we obtained the distributions for  $2_1^1$ ,  $3_1^1$ , and  $5_1^1$  (Figure



Figure 4. The raw image of the CHD<sub>2</sub> product probed by fixing the probe laser frequency at the peak of the  $0_0^0$  origin band. Shown in the lower portion is the resultant product speed distribution with the assigned state-pairs as indicated.



**Figure 5.** Illustrated in (a) is the speed distribution for the "reduced"  $3_1^1$ -P(U) from Figure 3, for which the contribution from  $0_0^0$  has been removed. The dotted curve, labeled  $1_1$ , represents the contribution from the spectral contamination of the  $1_1^1$ -band, which is obtained by subtracting the  $0_0^0$ -contribution from the  $1_1^1$ -distribution shown in the top panel of Figure 3. Shown in (c) is the resultant distribution after the  $1_1$ -contamination being removed from  $3_1^1$  as illustrated in (a). Similarly, (b) and (d) yield the distributions for  $0_0^0$  and  $1_1^1$ .

5(b)-(d)) that are free from the contaminations from the  $0_0$  and  $1_1$  states. The three resultant distributions are, however, similar and display heavily overlapped structures. To disentangle the multicomponent distributions unambiguously and in a more robust manner, we have to call upon more elaborate pattern recognition methods. Specifically, XCC (extended cross correlation) was applied to recover information from the entangled distributions shown in Figure 5(b)-(d).



Figure 6. Three recursion maps with each point on the map representing the intensities in the two P(U) distributions at the same speed. The ratio directions (or the slopes) for all three  $c_i$ 's are unity, validating the use of eq 4.

XCC is one of many data analysis methods. It is a pattern recognition-based technique designed to identify and recover patterns that are interfered or overlapped in multicomponent spectra; and it can be applied in a model-free manner. We adapted it here because of its straightforward application, and more importantly that this approach does not require the experimental intensity normalization of the images or distributions involved.

To apply XCC to the present problem, we first assume that the three P(U) distributions shown in Figure 5(b)-(d) are the result of linear combinations of three genuine patterns for the  $2_1$ ,  $3_1$ , and  $5_1$  states.

That is,

for 
$$\lambda$$
 at  $5_1^{1}$ :  $I_A = a_1 I_{5_1} + b_1 I_{2_1} + c_1 I_{3_1}$  (1)

for 
$$\lambda$$
 at  $2_1^{\ 1}$ :  $I_{\rm B} = a_2 I_{5_1} + b_2 I_{2_1} + c_2 I_{3_1}$  (2)

for 
$$\lambda$$
 at  $3_1^{1}$ :  $I_{\rm C} = a_3 I_{5_1} + b_3 I_{2_1} + c_3 I_{3_1}$  (3)

Here, the  $I_{A}$ ,  $I_{B}$ , and  $I_{C}$  represent the distributions in Figure 5(b)–(d), and  $I_{5_1}$ , etc. denote the true patterns or distributions of



**Figure 7.** The lower portion shows the two speed distributions with the  $I_{3_1}$ -component removed,  $I_{A-C}$  and  $I_{B-C}$ . Their recursion map is displayed in the upper portion. The slope  $(b_1-b_3)/(b_2-b_3) = 0$  gives  $b_1 = b_3$ , implying that  $I_A$  and  $I_C$  contain about the same amounts of  $I_{2_1}$ .

the product states (e.g.,  $v_5=1$ ) from the reaction. The coefficients  $a_i$ ,  $b_i$ , and  $c_i$  describe the relative weights of the patterns in each observed P(U) distribution shown in Figure 5(b)–(d). The goal is then to determine those coefficients in a least-biased and model-free way, which can be achieved in XCC by the so-called recursion map.<sup>16,17</sup> Although a three-dimensional recursion map has been generated from eqs 1–3, it turned out to be problematic for the present case, presumably because one of the components is almost completely overlapped with the other two (vide infra). We adopted instead a two-dimensional approach, operated in a sequential manner, to provide an intuitive understanding of the underlying concept of the XCC method.

Once again, the advantage of using the XCC approach is that there is no need to experimentally normalize the entangled distributions. Hence, we are free to scale the  $I_A$ ,  $I_B$ , and  $I_C$ distributions (Figure 5(b)–(d)) to the same peak heights. Energetically, those dominant peaks are almost entirely attributed to the  $I_{3_1}$  components, thus we have  $c_1 \approx c_2 \approx c_3 \approx 1$ , as will be demonstrated shortly. Equations 1–3 can be, for the time being, rewritten in a shorthand matrix form

We first examined the recursion maps among them, as shown in Figure 6. What is plotted here are the intensity values

#### Unraveling Multicomponent Images

in either of two distributions. That is, the coordinates of each point represent the intensities in the two distributions at a given speed of CHD<sub>2</sub> products. Also shown are the straight lines passing through the origin. The points that cluster around the straight line have signal content that can be in general associated with one of the genuine patterns. In other words, these points correspond to the CHD<sub>2</sub> speeds at which nonoverlapped features are found in the two distributions; hence, the slopes of these lines give the ratios of the corresponding coefficients. As is seen, the ratios of all three  $c_i$  coefficients are indeed unity, justifying eq 4. However, what remains are only three other slopes or ratios that are not sufficient to obtain the six unknowns in (4).

Taking advantage of  $c_1 = c_2 = c_3 = 1$ , we examined next the distributions without the  $I_{3_1}$  contributions, i.e.

The resultant difference distributions are displayed in Figure 7, along with their recursion map. A slope of zero for  $(b_1-b_3)/(b_2-b_3)$  suggests that  $b_1 = b_3$  or that  $I_A$  and  $I_C$  contain about the same amounts of  $I_{2_1}$ , which further implies that the  $I_{A-C}$  distribution closely resembles the genuine  $I_{5_1}$  pattern, which is proportional to  $(a_1-a_3)I_{5_1}$ . Given that and the two slopes  $a_1/a_2$ ,  $a_3/a_1$  shown in Figure 6, all three amplitudes  $a_1I_{5_1}$ ,  $a_2I_{5_1}$ , and  $a_3I_{5_1}$  can then be obtained with the coefficients  $a_1 = 1.572$ ,  $a_2 = 0.733$ , and  $a_3 = 0.572$ .

From the above, eq 4 is now reduced to eq 6, i.e., only two

|                | $I_{5_1}$ | $\mathbf{I}_{2_1}$    | $I_{3_1}$ |     |
|----------------|-----------|-----------------------|-----------|-----|
| I <sub>A</sub> | 1.572     | <b>b</b> <sub>3</sub> | 1         |     |
| $I_B$          | 0.733     | $b_2$                 | 1         | (6) |
| I <sub>C</sub> | 0.572     | <b>b</b> <sub>3</sub> | 1         |     |

unknowns remain. It is worth mentioning that the slope  $(a_1-a_3)/(a_2-a_3) = 6.2$ , which is entirely consistent with the values of  $a_1/a_2$  and  $a_3/a_1$  shown in Figure 6, also indicates that the amount of  $I_{5_1}$  in  $I_{B-C}$  is about 0.16 (or 1/6.2) of that in  $I_{A-C}$ , which is pure  $I_{5_1}$ . Thus,  $I_{B-C} = 0.16I_{5_1} + (b_2-b_3)I_{2_1}$ . Knowing  $I_{5_1}$  and the ratio of  $b_3/b_2$  from Figure 6, one could then deduce the profiles of  $b_2I_{2_1}$  and  $b_3I_{2_1}$  from  $I_{B-C}$  (Figure 7) based on the above equation for  $I_{B-C}$ , yielding  $b_2 = 1.677$  and  $b_3 = 0.677$ . Once this is done, the profile of  $I_{3_1}$  can then be deduced from each  $I_A$ ,  $I_B$ , and  $I_C$ . The resultant  $I_{3_1}$ 's, unfortunately, all showed significant negative-going signals around the peak of  $I_{2_1}$  distribution—a physically unreasonable result.

To trace the source of this error, we took an alternative approach. Since  $I_{5_1}$  is known as  $I_{A-C}$  from eq 6, presented in Figure 8 are the two distributions of  $I_{B-5_1}$  and  $I_{C-5_1}$ , which are without the contributions from  $I_{5_1}$ . Their difference must then be entirely due to  $(b_2-b_3)I_{2_1}$ , and their recursion map yields a value of  $b_3/b_2 = 0.158$ , which is in significant variance with the above value of 0.40 given from Figure 6. (We will comment on this discrepancy later.) Using this alternative ratio to extract the amplitudes of  $I_{2_1}$  in each  $I_A$ ,  $I_B$ , and  $I_C$ , we obtained  $b_2 = 0.158 = 0.158$ .



**Figure 8.** An alternative way for applying the XCC analysis. Presented in the lower panel are the two speed distributions with the 5<sub>1</sub>-component removed,  $I_{B-5_1}$  and  $I_{C-5_1}$ , and in the upper part is their recursion map.

1.187 and  $b_1 = b_3 = 0.187$ . And the  $I_{3_1}$ 's thus derived appeared to be self-consistent and physically more reasonable. Figure 9 presents the decomposition of the three entangled  $I_{\rm B}$ ,  $I_{\rm A}$ , and  $I_{\rm C}$  distributions. And the final matrix becomes

The small negative values (near the peak of  $I_{51}$ ) for  $I_{31}$  suggest a slight error in  $I_{51}$ , presumably arising from the slope uncertainty of the recursion map shown in Figure 7. It also becomes clear from Figure 9 that the  $I_{21}$  components are entirely overlapped with either  $I_{31}$  over the high-speed end or  $I_{51}$  over the slower end. And the amplitudes of  $I_{21}$  in either  $I_A$  or  $I_C$  are much smaller than the other two components. As a result, the intensities of  $I_C$  (thus also  $I_A$ ) in this particular speed range are severely contaminated, yielding a "biased"  $b_3/b_2$  ratio in the primitive recursion map between  $I_C$  and  $I_B$  (Figure 6).

As is readily seen, the retrieved speed distributions for the  $(3_1, 2)$ ,  $(2_1, 2)$ , and  $(5_1, 2)$  product pairs display peaks that deviate somewhat from the calculated, respective energetic limits. The degrees of deviation represent the rotational energy excitations of the two product pairs. Simple analysis, by virtue of energy conservation, reveals that the average rotational energy contents for  $(5_1, 2)$ ,  $(2_1, 2)$ , and  $(3_1, 2)$  are about 0.64, 1.1, and 2.6 kcal/mol, respectively. In other words, the correlated rotational excitation of the HF(v=2) product is significantly higher when the CHD<sub>2</sub> coproduct is formed with one quantum excitation in the CD<sub>2</sub> scissors mode ( $v_3$ ) than in the CD<sub>2</sub>



**Figure 9.** Final results, showing the partitions of the three heavily overlapped  $2_1^1$ ,  $5_1^1$ , and  $3_1^1$  distributions. A closer comparison of the resultant  $3_1$ -component, obtained from each of the three distributions, reveals that they are nearly superimposable, indicating the self-consistency of the present XCC analysis.

symmetric  $(v_2)$  or asymmetric  $(v_5)$  stretch. The implication of this finding to reaction dynamics will be discussed in a future report on this reaction over a wide range of initial collision energies.

### **IV. Summary**

Two contributions are reported in this work. First, using the imaging spectroscopy technique,<sup>13,14</sup> two new REMPI bands,  $2_1^1$  and  $5_1^1$ , of the CHD<sub>2</sub> radical are identified from the reaction  $F + CH_2D_2 \rightarrow HF + CHD_2$ . Both bands are heavily overlapped

with the  $3_1^1$  transition and to a lesser extent with the  $0_0^0$  and  $1_1^1$  features. The ion velocity-mapped images of the  $3_1^1$ ,  $2_1^1$ , and  $5_1^1$  bands show severe interferences from each other and from the tails of the more intense  $0_0^0$  and  $1_1^1$  bands. Using the simple subtraction scheme, the contributions from the latter two can be removed easily. Extended cross correlation analysis<sup>16,17</sup> was then exploited to unravel the interferences and to recover the genuine speed distribution of each individual component. With the methodology established, a copious set of image data over a wide range of collisional energies can then be analyzed to reveal the pair-correlated reaction dynamics, which will be reported in the near future.

**Acknowledgment.** We are indebted to Y.-T. Wu and H.-Y. Liao for their help in acquiring some of the data of this project. This work was supported by the National Science Council of Taiwan under NSC 95-2119-M-001-002.

#### **References and Notes**

- (1) Lin, J. J.; Zhou, J.; Shiu, W.; Liu, K. Science 2003, 300, 966.
- (2) Zhou, J.; Lin, J. J.; Shiu, W.; Liu, K. J. Chem. Phys. 2003, 119, 4997; Phys. Chem. Chem. Phys. 2006, 8, 3000.
- (3) Shiu, W.; Lin, J. J.; Liu, K.; Wu, M.; Parker, D. H. J. Chem. Phys. 2004, 120, 117.
  - (4) Zhou, J.; Lin, J. J.; Liu, K. J. Chem. Phys. 2004, 121, 813.
  - (5) Shiu, W.; Lin, J. J.; Liu, K. Phys. Rev. Lett. 2004, 92, 103201.
- (6) Zhou, J.; Shiu, W.; Lin, J. J.; Liu, K. J. Chem. Phys. 2004, 120, 5863; J. Chem. Phys. 2006, 124, 104309.
- (7) Zhou, J.; Lin, J. J.; Zhang, B.; Liu, K. J. Phys. Chem. A 2004, 108, 7832.
- (8) Zhou, J.; Zhang, B.; Lin, J. J.; Liu, K. Mol. Phys. 2005, 103, 1757.
  (9) Zhang, B.; Liu, K. J. Chem. Phys. 2005, 122, 101102; J. Phys. Chem. A 2005, 109, 6791.
- (10) Zhang, B.; Shiu, W.; Lin, J. J.; Liu, K. J. Chem. Phys. 2005, 122, 131102.
- (11) Zhang, B.; Shiu, W.; Liu, K. J. Phys. Chem. A 2005, 109, 8983; J.
   Phys. Chem. A 2005, 109, 8989.
- (12) Liu, K. Phys. Chem. Chem. Phys. 2007, 9, 17; J. Chem. Phys. 2006, 125, 132307.
  - (13) Zhang, B.; Zhang, J.; Liu, K. J. Chem. Phys. 2005, 122, 104310.
  - (14) Zhou, J.; Lin, J. J.; Liu, K. J. Chem. Phys. 2003, 119, 8289.
- (15) Yan, S.; Wu, Y.-T.; Liu, K. Phys. Chem. Chem. Phys. 2007, 9, 250.
- (16) Jacobson, M. P.; Coy, S. L.; Field, R. W. J. Chem. Phys. 1997, 107, 8349.
- (17) Coy, S. L.; Jacobson, M. P.; Field, R. W. J. Chem. Phys. 1997, 107, 8357.
- (18) Frasinski, L. J.; Codling, K.; Hatherly, P. A. Science 1989, 246, 973.
- (19) Hercules, D. M.; Houalla, M.; Proctor, A.; Fiedor, J. N. Anal. Chem. Acta **1993**, 283, 42.
- (20) Fiedor, J. N.; Proctor, A.; Houalla, M.; Hercules, D. M. Surf. Interface Anal. 1993, 20, 1.
- (21) Lin, J. J.; Zhou, J.; Shiu, W.; Liu, K. Rev. Sci. Instrum. 2003, 74, 2495; Chin. J. Chem. Phys. 2004, 17, 346.
- (22) Zhou, J.; Lin. J. J.; Shiu, W.; Pu, S.-C.; Liu, K. J. Chem. Phys. **2003**, *119*, 2538.
  - (23) Dong, F.; Lee, S.-H.; Liu, K. J. Chem. Phys. 2000, 113, 3633.
- (24) Brum, J. L.; Johnson, R. D., III; Hudgens, J. W. J. Chem. Phys. 1993, 98, 3732.
- (25) Westre, S. G.; Liu, X.; Getty, J. D.; Kelly, P. B. J. Chem. Phys. 1991, 95, 8793.
  - (26) Mebel, A. M.; Lin, S.-H. Chem. Phys. 1997, 215, 329.
  - (27) Sonnenfroh, D. M.; Liu, K. Chem. Phys. Lett. 1991, 176, 183.